IMlusion3D: 3D Multiview Illusion with 2D Diffusion Priors
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Figure 1. 3D Multiview Illusion. Our work expands the capability of existing multiview illusions (based on shadow, wire, or 2D plane) to
3D surfaces with perspective views. Different concepts can be observed when rendering our generated illusion from different perspectives.
We showcase our generated 3D multiview illusions with different setups with text prompt inputs, including cubes, spheres, and reflective
cylinders with 2D image grids and 3D shapes. For videos of the result gallery and real-world examples, please see website.

Abstract

Automatically generating multiview illusions is a com-
pelling challenge, where a single piece of visual content of-
fers distinct interpretations from different viewing perspec-
tives. Traditional methods, such as shadow art and wire
art, create interesting 3D illusions but are limited to sim-
ple visual outputs (i.e., figure-ground or line drawing), re-
stricting their artistic expressiveness and practical versa-
tility. Recent diffusion-based illusion generation methods
can generate more intricate designs but are confined to 2D
images. In this work, we present a simple yet effective ap-
proach for creating 3D multiview illusions based on user-
provided text prompts or images. Our method leverages
a pre-trained text-to-image diffusion model to optimize the
textures and geometry of neural 3D representations through
differentiable rendering. When viewed from multiple an-
gles, this produces different interpretations. We develop
several techniques to improve the quality of the generated

3D multiview illusions. We demonstrate the effectiveness of
our approach through extensive experiments and showcase
illusion generation with diverse 3D forms.

1. Introduction

From one angle, it’s a campfire; from another, a butter-
fly—such is the magic of multiview illusions, where a sin-
gle object shifts its interpretation with every change of per-
spective [18, 35, 48, 54, 58]. This is an exciting form of
art where the viewer’s angles can affect their visual expe-
riences. However, creating such an artwork is non-trivial.
Shadow art is one of the popular forms [4, 23, 24, 45], us-
ing light and shadows to create different interpretations of a
single 3D object. The 2D shadows cast by the 3D object can
change based on the light’s position, altering the perceived
visual output. Another form of multiview illusion is wire art
[38, 57, 59], which involves creating 3D structures that re-
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veal different line drawings when viewed from specific an-
gles. Although these methods offer appealing 3D visual ex-
periences, they are limited to producing simple images and
require massive skill practice. Mirror and reflective cylinder
art also present interesting visual effects (Figure 2d) but is
confined to a single view. Motivated by the recent advances
in using pretrained diffusion models to create detailed 2D
illusion [3, 9], we aim to develop automatic methods for
high-quality 3D multiview illusion generation.

We present a simple yet effective framework for creating
3D multiview illusions guided by text prompts and images.
Our approach optimizes 3D neural representations through
differentiable rendering to produce the desired visual in-
terpretations. We achieve this with a pre-trained diffusion
model using Variational Score Distillation [50]. Creating
multiview 3D illusions induces additional challenges that
are not in 2D settings. For example, the 3D ambiguity leads
to substantial local minima that hinder optimization. To
this end, we propose several techniques to improve the gen-
eration quality, including patch-wise denoising, scheduled
camera jittering, and progressive render resolution scaling.

Existing diffusion models often function at a specific
range of resolutions. We propose patch-wise denoising,
which enables VSD-based methods to optimize effectively
at higher resolutions. Consequently, our approach expands
the capabilities of existing multiview illusions by generat-
ing detailed high-resolution 3D illusions at 1024 x 1024.

When using the above method to generate 3D illusions,
we observed a common issue where the described concepts
appear multiple times within a single view, as shown in the
third row of Figure 1 1. To mitigate this duplicate pattern is-
sue, we introduce scheduled camera jittering. Specifically,
we perturb the rendering camera with Gaussian noise during
training, ensuring smooth and seamless transitions between
views. We schedule the amount of Gaussian noise level dur-
ing the denoising process and start with a large camera jit-
tering to effectively reduce the duplicate pattern problem at
early training stage.

We also develop a novel technique that progressively in-
creases rendering resolution to improve the quality of the
generated illusions. This technique enforces the fusion of
image content across different views, while further reducing
the duplicate pattern issue. Specifically, we progressively
increase the rendering resolution throughout the optimiza-
tion process. This approach ensures that the main object is
optimized at the center of the view, resulting in clearer and
more focused illusions when combined with camera jitter
and patch-wise denoising.

With our illusion generation framework, we explore var-
ious 3D multiview illusions with different forms, including
cubes and spheres with neural texture representations, re-
flective surfaces, and ambiguous 3D shapes. Our contribu-
tions include:
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(c) Shadow art [25].

Figure 2. 2D and 3D Illusions. Each subfigure highlights dif-
ferent types of visual effects. (a) 2D flip illusion [42]. Existing
3D illusions typically form line drawings [12] (b) or figure-ground
images like shadows [24] (c). In contrast, our work expands the
capability to generate 2D color images from different viewpoints.
(d) When placed on a textured surface, a reflective surface can re-
veal new content [32]. However, it takes substantial time and effort
for an artist to develop such a work. Our method simply describes
the process and supports generating more than one single view.

* We explore a novel problem to generate 3D multiview il-
lusions using pre-trained 2D diffusion models.

* We introduce several techniques and design choices to
improve the quality of the 3D multiview illusions.

* We demonstrate that our approach can enhance and over-
come the limitations of traditional artistic methods, with
results applicable to real-world scenarios.

2. Related Work

2D illusion. Since 1930, psychologists have studied am-
biguous and illusion figures [, 2, 17, 20]. Human per-
ception allows for multiple interpretations of the same im-
age [29, 53]. Human perception is influenced by vari-
ous factors such as the duration of stimulus [52], reaction
time [36, 47], critical features [10], sensory memory [33],
and predictive processing [34]. Researchers have devel-
oped algorithms in computer vision to select images and
create customized hybrid [30] and mosaic images [56]. Re-
cent works have extended the perception of visual illusions
to convolutional neural networks (CNNs) [11]. Creating
camouflage images by hiding objects in scenes has been
achieved using various models [7, 31], including deep learn-
ing [60], GANs [55], and diffusion models [21]. Addition-
ally, perceptual puzzles can be designed using differentiable
algorithms [5]. Efforts have also been made to quantify am-
biguities in illusion images [49] and understand perceptual
illusions using generative classifiers [13]. However, models
like CLIP [40] can still be fooled by optical illusions [28].
These illusions are time-consuming to make and require
a high level of expertise. The development of generative
Al, particularly Diffusion models [42], has simplified the



generation of high-quality images from text prompts. Re-
cent works [3, 9] have utilized diffusion models to gen-
erate images with 2D illusion with different views corre-
sponding to different text prompts (Fig 2a). These meth-
ods utilize diffusion models to generate illusion artwork in
two main ways: 1) Simultaneously denoising the RGB im-
age from different views [9] using a pixel-based diffusion
model [16]. However, applying the inference pipeline to
3D generation presents significant challenges. This limi-
tation arises because of the complexity introduced by the
Gaussian property of noise in diffusion processes. While
diffusion models excel in 2D settings, transitioning to 3D
requires handling multiple overlapping views and maintain-
ing coherence across different perspectives. 2) Using an
optimization-based method to train an RGB image repre-
sentation with Score Distillation Sampling (SDS) loss [44]
or Variational Score Distillation (VSD) loss [50], which is
most effective when training in the latent space [3]. We
build upon an optimization-based approach to extend the
capability to 3D illusion generation.

3D illusion. The perception of 3D objects may involve var-
ious forms of illusions. Different viewing angles can lead
to varying interpretations of the same object [14, 46]. Ad-
ditionally, the interpretation of 2D shadows cast by 3D sur-
faces can vary based on the light source’s position, affect-
ing figure-ground perception [4, 23, 24, 45](see Fig 2b)).
Similarly, the interpretation of line drawings of 3D wires
are also illusions [12, 38, 57, 59] (see Fig 2c)). These
approaches typically generate simple images, such as ba-
sic figure-ground representations, line drawings, or abstract
forms. In contrast, our work creates colorful 3D illusions
with complex, detailed interpretations, advancing the art
of 3D illusion creation. Mirror and reflective cylinder art
(Fig 2d)) present intriguing visual effects but are typically
confined to a single view. Our approach generates multiple
views, including top and side perspectives, and can even
incorporate two reflective cylinders/mirrors to create three
distinct views, which is beyond human ability.

3D generation using diffusion models. Diffusion mod-
els have demonstrated significant capability in generating
photorealistic 2D images. Recently, they have been widely
adopted for 3D generation, overcoming the need for large
labeled 3D datasets [6, 19, 22, 37, 50? ]. DreamFusion [37]
leveraged text-to-image diffusion models for 3D synthe-
sis by employing a probability density distillation (SDS)
loss. However, the resulting images often have low reso-
lution, excessive saturated colors, and over-smoothing is-
sues. Building on this, Magic3D [19] achieved high-quality
3D mesh models through a two-stage optimization frame-
work, significantly improving the quality of the generated
3D models. ProlificDreamer [50] further advanced the field
by introducing Variational Score Distillation (VSD) loss to

address the saturation and smoothing problems associated
with the SDS loss. This approach enhances the diversity
and quality of the generated samples. We utilize Variational
Score Distillation (VSD) as our baseline to generate our 3D
multiview illusions using text-to-image diffusion models.

3. Method

Given multiple text prompts, we aim to create 3D illusions
that reveal distinct interpretations from different viewing
angles, with each interpretation corresponding to a spe-
cific text prompt. We create these illusions by changing
the viewing angles of common 3D shapes or using reflec-
tive surfaces that generate reflections distinct from the orig-
inal scene. Here, we present our approach for optimizing
rendered views to accurately align with their correspond-
ing text descriptions. Our method leverages the capabili-
ties of pretrained diffusion models and incorporates several
novel techniques and design choices to enhance the quality
of these 3D illusions.

3.1. Background

Given a 3D representation G, we optimize the rendering of
each viewpoint V; to be aligned with a specific text prompt
y;. For example, we texture the surface of a 3D cube to gen-
erate content corresponding to multiple text prompts. We
begin by selecting a corner of the cube and identifying the
three adjacent faces connected to it. Each view V; is con-
figured to display any two adjacent faces, allowing us to
associate three distinct text prompts with the corresponding
views. This setup ensures that each face is visible in two
different views, creating overlapping regions on the cube
that are jointly optimized to satisfy two prompts.

We parameterize the texture field using a neural net-
work with parameters 6 of the 3D scene. This network em-
ploys a multiresolution hash encoding MLP from Instant-
NGP [26] to embed the texture features. We denote the
hashmap MLP as the function f, such that the queried tex-
ture RGB T is given by T' = f(E(q);0), where q is the
query coordinate and £ is the embedded texture map fea-
ture. To optimize our texturing module f(6) for generat-
ing visual illusions, we utilize a pre-trained Stable Diffu-
sion model [42]. While Score Distillation Sampling [37] is
a common method for utilizing 2D diffusion priors, it of-
ten produces over-smoothing and color over-saturation ar-
tifacts. To mitigate these issues, we adopt the Variational
Score Distillation (VSD) method [50].

At each training timestep, we render an RGB image by
querying the texture field, defined as T = f(E(q); ). The
VSD gradient is computed using a pre-trained diffusion
model Ppretrained along with a trainable LoRA module ¢:
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Figure 3. Method overview. We illustrate the process of generating a 3D multiview illusion from a cube with three varying interpretations
from different viewpoints (V1, V>, and V3) guided by text prompts (y1, y2, and y3). First, we render the cube from the target viewpoints
V; applying scheduled camera jitter C'(k) and scheduled render size R(k) with respect to the gradient flow time k. Camera jitter improves
generation quality and render size scheduling helps reduce the duplicate pattern issue issue. We then utilize the multi-resolution texture

field T to obtain the images (I1, I2, and I3) at resolution R(k) €

[512, 1024]. To increase resolution during training, we extract a random

patch P; of size 512 x 512 from each rendered image I;, which is then fed into a pre-trained VAE encoder. Given the 3D shape, we aim to
optimize the parameters of the texture field. The generation of these viewpoints is optimized by leveraging a text-to-image diffusion model
guided by the text prompts (y1, y2, and y3). To avoid unnatural, saturated colors, we apply Variational Score Distillation (VSD) and LoRA
model. We apply the same settings for spheres and scenes with reflective surfaces.

where € Ppretrained ¢pretrained(f (0); Z, t) and €p =
d(f(0);2,t). The time step ¢ is randomly sampled from
t ~ U(0.02,0.98), and z represents the noisy input to the
model with the injected noise following € ~ N'(0,1). The
weighting function w(t) adheres to the VSD configuration.
We alternate between updating the texture map param-
eters 6 and the LoRA weights. The VSD gradient above
is used to update the texture map parameters 6, while the
LoRA module ¢ is optimized with the following objective
by fine-tuning the diffusion model on current renderings:
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Generating 3D illusions using this baseline often fails,
as shown in Figure 10, due to the under-constrained nature
of 3D optimization compared to 2D illusion generation. In
the following, we outline the key challenges faced and the
strategies we developed to address them.

3.2. Camera jitter

Optimizing the texture representation with VSD loss from a
fixed camera view can result in substantial artifacts. Inter-
estingly, such artifacts are rarely observed in text-to-image
generation results [50]. When computing the VSD gradient
%((f), we need to backpropagate the gradient to the tex-
ture map through the latent diffusion model encoder. We

hypothesize that these artifacts arise from the presence of
a “blind spot” in the encoder. Specifically, the encoder’s
latent representation does not change significantly with or
without these artifacts. In contrast, text-to-3D approaches
do not suffer from this issue due to dense camera views
sampled during training. The artifacts in the “blind spot”
of one view can be optimized in another.

Motivated by this observation, we introduce a random
offset to the camera parameters during optimization. With-
out this adjustment, the output shows grid-like artifacts (see
Figure 9). We find that incorporating a camera shift im-
proves the smoothness of the generated images. However,
applying this camera jitter technique from the start of train-
ing leads to duplicate pattern artifacts, particularly when
patch-wise denoising is used to boost render resolution. To
address this, we constrain the camera jitter and gradually
increase its level as training progresses. We tested two
scheduling strategies for increasing camera jitter, linear and
sigmoid mapping, and found that a linear schedule gener-
ally performs better in practice.

We define the camera jitter C'(k) as a gradual, time-
dependent adjustment to the camera parameters during
training. Specifically, C(k) is a linear function of the cur-
rent training timestep k, where Cpax represents the maxi-
mum camera jitter range, and ki, is total number of train-
ing steps:

k
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The camera parameters, rotation R, translation 7', and
field of view FOV are updated as follows:

R = Riniia + N(0,C(k) - oR),
T = Tinitia + N (0,C(k) - o), 4
FOV = FOVipitia + N (0, C(k) - oFov),

where Rinitial, Linitia and FOVi,isar are the initial camera in-
trinsic parameters, and or, or, and opgy denote the stan-
dard deviations for rotation, translation, and field of view.

3.3. Resolution scaling with patch denoising

In 3D optimization, the problem is often under-constrained,
leading to multiple local optima that degrade illusion qual-
ity. A common failure mode occurs when the optimization
cheats by showing each prompt on only one face. Ideally,
prompts should overlap across faces to create the illusion
(e.g., for the cube example, prompt 1 — faces 1 and 3,
prompt 2 — faces 1 and 2, prompt 3 — faces 2 and 3).
However, a local optimum can emerge where each prompt ¢
only shows up on face ¢, preventing the desired overlap and
disrupting the illusion effect.

Another local optimum occurs when each face contains
multiple, separate illusion contents, leading to a duplicate
pattern issue. For example, face 1 might display prompts
1 and 2, face 2 shows prompts 2 and 3, and face 3 shows
prompts 1 and 3. This redundancy disrupts the intended
multiview illusion, resulting in incoherent and visually un-
appealing outputs. We often observe this issue in the base-
line method (see failure cases 4.3), significantly impacting
the quality of the generated illusions.

Moreover, pre-trained Stable Diffusion models [42] are
limited to single-stage resolutions of 512 x 512 or 768 X 768.
To achieve high-resolution 1024 x 1024 results, one way
is to adopt a two-stage illusion generation process simi-
lar to pretrained high-resolution Stable Diffusion models [?
]. However, this method is not feasible, even in 2D illu-
sion cases. Existing work like [8] and [51] employ patch-
based denoising techniques with diffusion models to gener-
ate high-resolution images. While effective for some tasks,
using random patches for training introduces duplicate pat-
tern artifacts, as the model starts generating primary content
inconsistently across patches. A simple strategy to mitigate
this involves starting patches at the center and gradually ex-
panding their location outward. However, we found that
both starting gradually from the center or sampling stochas-
tically generate content and subsequently replicate it else-
where resulting in duplicate pattern artifacts.

To address this, we propose a progressive renderer reso-
lution scaling strategy. Specifically, we begin by denoising
a 512 x 512 image to ensure that no repeated content is
present in the final rendered RGB image I;,. We then pro-
gressively enlarge the renderer resolution and sample a ran-
dom 512 x 512 image patch to refine the main content. This

process effectively mitigates the duplicate pattern issue and
enhances the overall quality of the multiview illusion while
achieving high-resolution results.

We tested two scheduling strategies to progressively
scale the renderer resolution R(k), linear and sigmoid map-
ping. We find both significantly reduce duplicate patterns
in practice, while sigmoid mapping o (k) generally demon-
strated improved performance across randomly sampled
prompt pairs y;. We define the render resolution R(k) as
follows, where a is the initial resolution of 512, b is the fi-
nal resolution of 1024, and k is the current training step:

o(k) = !
1+ exp (—10- (£ - 0.5)) ©)
Rk)=a+o(k) (b—a) (6)
4. Results

We validate our method’s performance through various ex-
periments, including ablation studies, to assess the impact
of different components and hyperparameters.

Baselines. We call the 512 resolution setting described in
Sec 3.1 baseline in the following. The inverse projection
baseline uses Stable Diffusion to independently generate
images of the three prompts and optimize the cube’s texture
map by performing an inverse projection of the 3D shape.
The latent blending baseline also uses Stable Diffusion to
independently generate images of the three prompts and
then blend these views by averaging their latent variables
in the overlapping region. We call the result using Dream
Target loss from [3] as Burgert et al..

Datasets. Illusion on real prompts is hard to succeed with
[3, 9]. We randomly select the painting style and primary
object and compose 43 prompt pairs to test illusion gen-
eration on spheres and cubes. We have a total of 86 il-
lusion examples evaluated on CLIP score [39], aesthetic
score/artifact [27], and alignment and concealment score
from [3, 9], on baselines and other design choices. Styles
or adding negative prompts do not significantly affect the
generation.

Table 1. Comparison with different baselines.

Method CLIPT Aes?T  Aes artifact | AT ct

Inverse projection 0.271 2.303 3.505 0.229  0.385
Latent blending 0.193 2.528 3.413 0.160 0.272
Burgert et al. [3] 0.179 2.958 3.309 0.144  0.206
Ours 0.288 2.791 3.247 0.251 0461

4.1. Quantitative Results

We quantitatively compare our method with the baselines
above in Table 1. Burgert ef al. [3] can have a higher score
on Aesthetic score, but their visual results are no better than
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Figure 4. Comparison with basic baselines. Inverse projection
can blend the images but cannot generate an illusion. Blending in
latent space also fails. Burget ef al.’s [3] method can not generate
an illusion of 3D shape. Our method can blend the primary content
while generating an illusion.
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A watercolor painting of a garden Aw oil painting of a rose Awn oil painting of a forest Aw oil painting of a waterfall

Figure 5. 3D multiview illusion with reflective surfaces. We
demonstrate illusion generation on a reflective cylinder (left) and
a curved mirror (right).

ours; we provide user study Table 3 and qualitative results
Fig 4 to showcase it. Our method has the best score except
for the aesthetic score among all the baselines.

Our user study provides respondents with three results
on the same prompt side-by-side. The result generated by
our final method is compared with two other results gen-
erated through other methods. The user is then asked to
select which one is the most visually appealing and which
one aligns best with the set of prompts. This data is then
aggregated, and we are able to compute the percentage of
users who prefer our result over others, normalized by the
number of times the result was presented to users.

4.2. Qualitative Results

We present qualitative results with basic baselines in Fig 4.
Our method can fuse the content from different prompts and
generate attractive results. We also show the setting of the
reflective surface by placing reflective cylinders or curved
mirrors on top of a plane in Fig 5 and Fig 6.

Reflective Scene  Aw oil painting of a forest

Reflective Scene @ swowy mountain village  Awn oil painting of a penguin An oil painting of a polar bear

Figure 6. 3D multiview illusion with two reflective cylin-
ders/mirrors. Creating an illusion with a single reflective cylinder
is already challenging for artists. For traditional methods, generat-
ing artwork on two cylinders simultaneously is even more difficult,
if not impossible. Here, using 2D diffusion priors, we can create
intriguing examples of illusion generation on two reflective cylin-
ders. This showcases an extension of human capability in creating
complex illusion artwork.

A

wany crowded people Waldo image

Figure 7. Personalized image illusion generation with reflective
surfaces. Given an RGB image, we can supervise the generation
of an image of one view by just using L2 loss and text to generate
an image of another content. We reinvent the Finding Waldo game
with a reflective cylinder. A real-world example is in the 3 image.

A house A house A clock tower

Figure 8. 3D shape illusion. A 3D shape generation model is
trained with a view from the reflected cylinder. Columns 1 and 2
are different views of the generated 3D object. Column 3 is a view
of the object from the reflective cylinder.



Table 2. Ablation on various design choices on CLIP sore, Aesthetic score, Alignment score and Concealment score. Our method
achieves the best among all the matrices

Method Patch denoising Camera jitter Resolution scaling ‘ CLIP 1t Aes? Aesartifact] AT C7T

Baseline X X X 0.184 2.526 3.481 0.143 0.195
Ablation-A (andom patch denoising) Vv X X 0.128 2.700 3.784 0.083 0.172
Ablation-B (wio resolution scaling, random camera jitter) vV random X 0.163 2.682 3.594 0.125 0.169
Ablation-C (wo resolution scaling, scheduled camera jitier) v scheduled X 0.155 2.520 3.693 0.119 0.193
Ablation-D (o camera tter) Vv X v 0.165 2.663 3.695 0.129 0.159
Ours v scheduled v 0.288 2.791 3.247 0.251 0.461

Table 3. Percentage comparison of visual appeal and prompt alignment for different models. Numbers shown are the percentage of
users who preferred a given method over alternatives in the user study.

‘ Burgert et al. [3] Baseline Ablation-A Ablation-B Ablation-C Ablation-D Ours
Visually Appealing? 10.14% 5.26% 28.15% 17.57% 29.50% 39.80% 60.61%
Aligns with Prompt? 4.73% 2.63% 30.37% 16.22% 18.78% 41.84% 63.17 %

b

w/o camera jitter

with camera jitter

Aw oil painting of a garden  An oil painting of a bird  Awn oil painting of a waterfall

Figure 9. Camera jitter can make the result smoother. Adding
camera jitter to the baseline method can make the transition be-
tween views more seamless but may also introduce two primary
contents in the generation.

L2 loss. By supervising the cylinder view with an RGB
image, taking the Waldo image as an example, we can gen-
erate a customized illusion with real example in Fig 7. We
use a perfume cap placed on an iPad to fabricate the result.

4.3. 3D shape illusion

We also train a 3D shape illusion with reflective surfaces.
Different content reveals when viewing a 3D object by look-
ing at the reflective cylinder beside it; see Fig 8.

Ablation. Adding camera jitter can smooth the transition
between views and may also introduce duplicate patterns if
patch-wise training is included, see Fig 9. We present visual
results under different design choices in Fig 10. Camera jit-
ter and patch denoising can introduce duplicate pattern is-
sues. Progressive resolution scaling with scheduled camera
jitter can resolve this. We also shrink the view on the sphere

case in comparison with our orthogonal setting. In Fig 12
we can see how our method force the fusion between views.

Failure Cases. In Fig 11, row 1 is a typical failure case of
random patch method, which happens on 70% of the ran-
domly selected prompt pairs. Although our method solves
most of the content fusion and duplicate pattern problems,
there are still chances that these could happen, with less than
5% of the probability of generating it. Row 2 and 3 in Fig.
11 are failure cases of our methods. Row 2 has duplicate
pattern artifacts; row 3 is a blending of image content.

5. Limitations

Our method may still suffer from duplicate pattern issues
with a lower probability; see Fig 11. The illusion of an
evenly shared surface is inherently ill-posed for the op-
timization process for each view. When optimizing two
views that share the same area, for the cube case, once there
is a principal component in that face that is not connected
with the other face, we will have duplicate pattern issues
(the same content on every single face of a cube). We re-
solved duplicate pattern issues by introducing progressive
resolution scaling. However, there are still cases where the
result is unsatisfactory or the training fails. This makes
sense because we are experimenting with a random choice
of prompt selections.

6. Conclusions

We introduce a novel approach for creating 3D multiview
illusions guided by text prompts. Our work uses differ-
entiable rendering and pre-trained diffusion models opti-
mized with Variational Score Distillation (VSD) loss to gen-
erate detailed 3D illusions viewable from different angles.
Key contributions include expanding multiview illusions to
complex 3D shapes with detailed textures and introducing
camera viewpoint jittering, patch denoising, and progres-
sive resolution scaling, significantly improving quality and
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Figure 10. Comparison of different design choices. Our method can have the best primary content fusion while obtaining visual quality.
The baseline method suffers null space of VAE encoder without camera jitter. Random patch denoising can improve the resolution of
results while introducing multiple duplicate primary content. Random camera jitter can make the transition smoother, but it still has
duplicate pattern artifacts. The scheduled camera jitter resolved the duplicate pattern issue a bit but couldn’t resolve it. Progressive render
resolution scaling can also smooth the result, but the fusion of the primary content is less and has minor duplicate pattern issues on the
horse. Our method combines progressive resolution scaling with scheduled camera jitter to produce results that center the primary content

and diminish duplicate pattern artifacts.

Duplicate objects

Duplicate objects

students tn a classroom A wosaic of a wonkey

Blending objects

womaw staring out a window

Aw oil painting of a frog

Figure 11. Failure cases. We observe duplicate object generation
and blending of objects among each view. Row 1, duplicate red
panda and mice in random patch method. Row 2, duplicate mon-
key faces in the third view. Row 3, blending on primary objects.

Orthogonal views

Shrink views

Aw oil painting of a zebra

Aw oil painting of a campfire Awn oil painting of a monkey

Figure 12. Shrink view on sphere. We shrink the view from
an orthogonal view to a more compact view on the sphere case.
Intermediate views are presented in 2" row and 4™ row.

consistency. The camera viewpoint jitter improved the ro-
bustness and visual quality between the viewpoints. Patch
denoising boosts the resolution of illusion results. Progres-
sive resolution scaling worked best for illusion generation,
ensuring more evident, focused illusions. We also identi-
fied challenges in generating illusions for highly overlap-
ping and minimally distorted shapes, suggesting future re-
search directions. Our work advances multiview illusions
by combining text-to-image generation with 3D rendering,
creating dynamic visual experiences. Future research can
explore more complex shapes, optimize efficiency, and en-
hance realism, further unlocking the potential of 3D multi-
view illusions.
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Ilusion3D: 3D Multiview Illusion with 2D Diffusion Priors

Supplementary Material

Our results can be best viewed as videos; please see web-
site. We provide more examples and more ablation studies
aside from the main paper in the website.

A. Implementation details

We implement the differentiable rendering and reflective
render using Pytorch3D [41]. Our method runs on an
NVIDIA RTX A6000 GPU with 4GB RAM. We set the
training time step for 2000, with timestep annealing to
t ~ U(0.02,0.5) after step 1000. We set the standard devia-
tions in equation (4) to 1, and Cp,y to 0.3. Adam optimizer
[15] was used, with learning rates 1 X 1073 for VSD loss
and 1 x 10~* for the LoRA loss. Each training takes 2
hours to converge. We use Stable Diffusion v2-1-base [43]
as a pre-trained diffusion model.

B. Ablation

We show more examples of ablation among different meth-
ods in Fig 13 in addition to Fig 10. To ablate the ability
to generate illusion, we increase the number of views to a
more challenging setting in Fig 14. We look at every corner
of the cube, and for each view, we look at three faces. In
total, we have eight views of a cube, and each face is shared
by four corners, i.e., four prompts. Videos can be found at
the ablation part in website.

C. Random sample, failure case and real-world
example

We provide random samples of our result in Fig 16 and 17.
All the prompts are randomly paired. A single reflective
surface example is in Fig 5. We also give more examples
of failure cases videos and analysis at website. The human
brain has objectified human faces in some sense, so it is
harder to hide a human face from another view in the illu-
sion generation process. Real-world examples videos can
also be found at website. We use an iPad and a perfume
cap/reflective paper card to make the example. We just grab
what we have to make the examples and haven’t text other
materials. We note that the surface of the perfume cap and
paper card is not smooth. If the reflective material is more
specular, the result will be more pretty.

D. 3D shape illusion

We provide more examples of 3D shape illusion generation
at website.

E. Texture map representation

We tested various texture map representations: plain RGB
images, MLP-represented images, and multiresolution tex-
ture maps. Plain RGB images failed to produce consistent
2D illusions. MLP representations [3] generated 3D il-
lusions but were limited in resolution due to GPU mem-
ory constraints. Multiresolution texture maps successfully
produced high-quality 3D illusions with higher render res-
olutions, highlighting the importance of appropriate texture
representation.

F. Discussion

Negative prompt of other views. To make the content of
one view hide better from another view, i.e., improving the
concealment of content. One may also propose that we add
the text prompt of view 1 to the negative prompt of view 2,
for example. We explored this method but figured it would
not only ruin the generation but could also remove the con-
tent from view 2.

Gradient mask. Applying a gradient mask during opti-
mization focusing on the central region can also enhance
the fusion of input views, especially when the object is off-
center. We explored this method on a 512-resolution case.
We didn’t include it in the 1024-resolution version because
the render resolution scaling can do the job.

Prompt selection. Illusion generation struggles to con-
verge without style constraints, yielding lower success
rates. Style-constrained prompts like “an oil painting of”
and “a lithograph of” perform better due to higher pixel
consistency, aligning with findings in Diffusion Illusion [3].

Cube and sphere. The cube scenario was more challenging
due to minimal surface distortion, which complicates the
concealment of the content, which can be observed in Fig
16. In contrast, scenes with more significant view distortion
(sphere, cylinder, and curved mirror) did not have this issue,
indicating that high overlap and low distortion make content
hiding more difficult.

Dream target loss. Dream target loss from Burgert et al.
[3] uses a target image to help generate the illusion; this
is useful in 2D cases when the view of the images doesn’t
change. In the 3D case, this method fails as it only super-
vises pixels within a fixed space that a VAE encoder can
see. If we move the camera, the training will fail as the
L2 loss part of Dream Target loss only supervises images
pixel-wise with the target image. VSD loss [50] doesn’t
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Figure 13. Comparison of different design choices on sphere case. Our method can have the best primary content fusion while obtaining
visual quality. The baseline method suffers null space of VAE encoder without camera jitter. Random patch denoising can improve the
resolution of results while introducing multiple duplicate primary content. Random camera jitter can make the transition smoother, but it
still has duplicate pattern artifacts. The scheduled camera jitter resolved the duplicate pattern issue a bit but couldn’t resolve it. Progressive
render resolution scaling can also smooth the result, but the fusion of the primary content is less and has minor duplicate pattern issues
on the horse. Our method combines progressive resolution scaling with scheduled camera jitter to produce results that center the primary

content and diminish duplicate pattern artifacts.
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Figure 14. Ablation on more views. We extend the multiview illusion to 8 corners of a cube, each view containing three faces of a cube,
and each adjacent corner has 180° flip viewing directions. We demonstrate our ability to generate illusions on more views on cube and

sphere cases.

have this problem because it supervises the content based
on the whole input image and the text prompt. So, if we
jitter the view a bit, the training will still succeed, and we
train part of the null space of a VAE encoder.

L2 loss. We also use L2 loss in the Waldo case in Fig. 7,
supervising one view to a ground truth image pixel-wise.
Because of the resolution mismatch of the low sampling

frequency of the texture map, we will have stripe-like ar-
tifacts on the texture map around the Waldo area on the tex-
ture map. To alleviate this problem, we query a patch of
the pixel around that area where the reflected ray from the
cylinder hit the plane. It can reduce the artifact, but cannot
fully solve it. This makes sense because, technically, we are
always under-sampling the multiresolution texture map.



3D lllusion User Study

Which resit s the most visually appeaing? *

Figure 15. Preview of User Study. The user study was distributed
over Google Forms. The user is provided with some context and
the relevant prompts, followed by three animated GIFs, one for
each method. They are then prompted with two multiple choice
questions to evaluate the quality of the results.

G. User Study

We present details of user study. We distributed three sur-
veys, each containing 11 sections of method comparisons to
39 users. Each section presented the user with three results
generated on the same prompt but with different methods.
The results are animated GIFs, allowing the user to eval-
uate all views of each result. The user is then prompted
to answer two questions: “Which result is the most visu-
ally appealing?” and “Which result aligns best with the text
prompt?”. A screenshot of user study is in Fig 15

To compute the result, we divide the number of times
each method was selected, Tejected, by the number of times
it was shown to the user, denoted as Typown:

Score — Tselected (7)

shown

This gives us a metric of the probability a user prefers
a method’s result over others, given that the result is dis-
played.



Figure 16. Random samples. We show random samples with the same prompt pairs on cube and sphere cases.
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Figure 17. Randome samples. We present more random examples on cube and sphere case.
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